Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Sci Total Environ ; 926: 171894, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38531441

RESUMO

In order to eliminate the impact of the industrial revolution on the environment and improve the water ecological environment, pollutant discharge reduction is imperative. With the acceleration of global discharge reduction process, the huge pollutant release potential and potential environmental effects of municipal solid waste landfills gradually appear, but its release amount and intensity have not been quantitatively revealed. We propose a coupling method of parameter stochastic simulation and physical process model simulation to estimate the hidden leakage of large-scale regional municipal solid waste landfills, and provide a methodology for estimating the hidden leakage of landfills in other countries and even in the whole world by taking China, which has the largest amount of waste generation among developing countries, as an example. Prior to the implementation of stringent construction quality control and assurance management requirements, the average annual leachate generation potential over the entire life cycle of 2600 landfills in China was estimated to be 4.66 × 108 m3, in which the concentrations of COD and NH3-N are 5.38 × 102-6.48 × 104 mg/L and 6.10-3.50 × 103 mg/L, respectively, and the total amounts are 5.21 × 103-7.81 × 108 t and 8.09 × 102-6.65 × 107 t, respectively. About 14 % of these pollutants may leak into the environmental media through the landfill liner with the average number of holes of 21.5/ha. For different regions, the overall release, discharge and leakage of COD and NH3-N in East China account for 35.70 %, 36.68 % and 29.60 % respectively, making it the region with the highest potential for discharge and risk of leakage. Meanwhile, the implementation of mandatory regulations related to leachate generation and control has led to a significant reduction in the leakage of pollutants. For instance, comprehensively detecting and repair of holes in the impermeable liner has reduced the number of holes to 2/ha, resulting in a reduction of >90 % in the leakage of pollutants.

2.
J Environ Manage ; 356: 120666, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38490005

RESUMO

The persistent combustion of fossil fuels has resulted in a widespread greenhouse effect attributable to the continual elevation of carbon dioxide (CO2) levels in the atmosphere. Recent research indicates that utilizing CO2 as a pyrolysis gasification medium diminishes CO2 emissions and concurrently augments the value of the resultant pyrolysis gasification products. This paper reviews recent advancements in the pyrolysis gasification of organic solid wastes under a CO2 atmosphere. Meanwhile, the mechanisms of CO2 influence in the pyrolysis and gasification processes were also discussed. In comparison to noble gases, CO2 exhibits reactivity with char at≥710 °C, resulting in additional mass loss of the sample. In addition, CO2 was able to increase the specific surface area and stability of biochar and reduce biooil toxicity by lowering the content of cyclic compounds in the biooil, while CO2 was able to react with GPRs with some volatile products (e.g., light hydrocarbons) to increase biogas yield. Finally, CO2 also prevents catalyst deactivation by reducing secondary coke formation. We also recommend directing future attention toward utilizing unpurified CO2 in pyrolysis and gasification. This review aims to expand the utilization of CO2 and advocate for applying pyrolysis gasification products.


Assuntos
Dióxido de Carbono , Pirólise , Fenômenos Químicos , Catálise , Resíduos Sólidos
3.
J Environ Manage ; 356: 120608, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38508008

RESUMO

Red mud (RM) is a kind of strong alkaline solid waste produced from the aluminum industry, which contributes significantly to environmental pollution and can cause severe health issues.Currently, RM is widely recognized as a potential material for soil remediation because of its rich metal oxide content, such as Fe/Al oxides. However, there is no comprehensive description on the roles of RM in passivation remediation of contaminated soil in mining areas. This review summarizes the mechanisms of passivation of heavy metals (HMs) in contaminated soil by RM, including precipitation, adsorption and ion exchange. Besides the effects of adding RM on soil physicochemical properties, heavy metal forms and ecological environment are further elaborated. Moreover, using the co-hydrothermal carbonization of RM and biomass for enhancing the efficiency of contaminated soil remediation is proposed as the main prospective research. This paper provides technical references for the resource utilization of RM and the treatment of heavy metal-contaminated soil.


Assuntos
Recuperação e Remediação Ambiental , Metais Pesados , Poluentes do Solo , Estudos Prospectivos , Metais Pesados/química , Poluição Ambiental , Solo/química , Alumínio , Óxidos , Poluentes do Solo/análise
4.
J Environ Manage ; 354: 120464, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38401504

RESUMO

Brick kiln co-treatment is a novel industrial hazardous wastes (IHWs) utilization process. However, the effects of chlorine (Cl) in wastes on heavy metals (HMs) during this process are overlooked. This study investigated the stabilization/solidification (S/S) and volatilization, as well as long and short-term leaching, of HMs in Cl-containing bricks. The results indicated enhanced formations of stable mineral phases (NiFe2O4, Ni2SiO4, Cd3Al2Si3O12, CdSiO3, FeCr2O4, Cr2O3, CuFe2O4, and CuAl2O4) in bricks at a low sintering temperature (800 °C) due to the affinity between Cl and HMs. By comparing HM concentrations before and after sintering in bricks, the study observed that Cl's presence significantly elevated the volatilization rates for Cd and Cu by 30.8% and 14.2%, respectively. In contrast, the effect on volatilization for Ni and Cr was not significant. Additionally, utilizing the NEN 7375 method, the cumulative leaching rates of Ni, Cd, Cr, and Cu over a 64-day experiment under extremely acidic conditions were 0.22%, 7.18%, 0.01%, and 1.46%, respectively. Similarly, higher short-term leaching rates of Cd (4.03%) and Cu (5.73%) than those of Ni (0.94%) and Cr (0.08%) were observed. This finding might be attributed to the lower stability of the Cd and Cu solid phases under acidic environments compared to those of Ni and Cr. Surface wash-off, dissolution, and diffusion were the processes governing HM leaching from bricks. The 10-year projections revealed a minimal release of HMs during future extended leaching, implying the successful S/S of HMs. This study provides a reference for assessing the environmental impacts of brick kiln co-processing of Cl-containing IHWs.


Assuntos
Cloro , Metais Pesados , Cádmio , Resíduos Perigosos/análise , Metais Pesados/análise
5.
J Environ Manage ; 351: 119939, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38169267

RESUMO

Secondary aluminum ash (SAD) disposal is challenging, particularly in developing countries, and presents severe eco-environmental risks. This paper presents the treatment techniques, mechanisms, and effects of SAD at the current technical-economic level based on aluminum ash's resource utilization and environmental properties. Five recovery techniques were summarized based on aluminum's recoverability in SAD. Four traditional utilization methods were outlined as per the utilization of alumina in SAD. Three new utilization methods of SAD were summarized based on the removability (or convertibility) of aluminum nitride in SAD. The R-U-R (recoverability, utilizability, and removability) theory of SAD was formed based on several studies that helped identify the fingerprint of SAD. Furthermore, the utilization strategies of SAD, which supported the recycling of aluminum ash, were proposed. To form a perfect fingerprint database and develop various relevant techniques, future research must focus on an extensive examination of the characteristics of aluminum ash. This research will be advantageous for addressing the resource and environmental challenges of aluminum ash.


Assuntos
Óxido de Alumínio , Alumínio , Reciclagem
6.
Heliyon ; 9(10): e20545, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37810863

RESUMO

Solid waste produced by the nonferrous smelting industry has a significant number of notable differences. The lack of recognition of solid waste characteristics is the main factor restricting its disposal and utilization. In this study, we analyzed the main production processes of the nonferrous smelting industry; identified the key production nodes of solid waste; and clarified the characteristics, including the physical, chemical, and pollution characteristics of solid wastes, through a large sample statistical analysis. We found similarities among solid wastes from a common generation source as well as notable differences among the different generation sources: slags and sludges from waste acid treatment and wastewater treatment units had a water content of 27.43-52.71% and 51.14-68.27%, respectively, which were significantly higher than those of other metallurgy and dust collection units; the pH of slags from an electrorefining unit was strongly alkaline; the mineral phase of sludges from wastewater treatment was only calcite; slags from a waste acid treatment unit were mainly in phase of gypsum, claudetite, and anglesite; the chemical composition of slags from pyrometallurgy and hydrometallurgy units was mainly SiO2 and Fe2O3. In this paper, we discuss a new classification method based on a common generation source for the first time. These results are beneficial to guide the disposal, utilization, and management of solid waste.

7.
Sci Total Environ ; 905: 167145, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37730046

RESUMO

To deeply understand the formation mechanism of polybrominated dibenzo-p-dioxins/furans (PBDD/Fs) in the thermal disposal process of polybrominated diphenyl ether (PBDE)-containing waste, this paper studied the formation pathways of key intermediates (free radicals, FRs) in the formation process of PBDD/Fs. BDE-209, the most common PBDE in the environment, was selected as the object of study to analyze FR formation by simulating the key conditions such as temperature (850 °C) and Fe-based materials when PBDE-containing waste entering cement kiln precalciner. Electron paramagnetic resonance (EPR) spectroscopy and density functional theory (DFT) calculations were used to study the reaction. The result of simulation experiments revealed carbon-centered radicals, and DMPO-OH analysis further confirmed the generation of FRs. The findings confirmed previous calculations predicting the existence of radical intermediates during the formation of PBDD/Fs from BDE-209. DFT calculations revealed the existence of an inner ortho-position CBr bond in BDE-209. The priority order of the bond breaking of BDE-209 was ether bond, inner ortho-position CBr bond, and outside ortho-position CBr bond. BDE-209 can further form three kinds of FRs, namely, oxygen-centered radicals of single benzene rings, carbon-centered radicals of single benzene rings, and carbon-centered radicals of double benzene rings. The specific processes of FR formation were inferred: high-temperature homogeneous cleavage of chemical bonds, electron transfer, and chemisorption, where electron transfer and chemisorption may be more important pathways. The proposed inner ortho-position cleavage within BDE-209 provides new insights into the degradation of PBDEs and the formation of PBDD/Fs; the results regarding BDE-209 generation radicals further elucidate the synthesis mechanism of dioxins, which is important for controlling dioxin generation and emission during the treatment and disposal of waste containing PBDEs.

8.
Sci Total Environ ; 904: 166705, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37652370

RESUMO

With the development of incineration technologies, incineration has become the most common treatment method of municipal solid waste in China. However, stabilized fly ash may enter landfills during the transition from landfill to incineration, which caused uncertain impact on landfill waste stabilization. Two simulated co-landfill columns were constructed based on different co-landfill methods (layer co-landfill and mixed co-landfill) to investigate the effect of stabilized fly ash co-landfilled municipal solid waste for bacterial community succession and change in metabolic pathways during hydrolysis-acidogenesis stage. The mixed co-landfill method resulted in higher degree of organic matter degradation, and the concentrations of volatile fatty acids (VFA) and chemical oxygen demand (COD) in leachate were higher. The dominant phyla were Firmicutes in the layered co-landfill column and Bacteroidetes in mixed co-landfill column. The dominant genera for the total bacterial composition and VFA production were different, Pseudomonas and Propionibacterium, Proteiniphilum and unclassified Bacteroides were the dominant genera responsible for VFA generation in the layered and mixed co-landfill columns. The genes for butyrate production were enriched in the layered co-landfill column, whereas those related to acetate production were enriched in mixed co-landfill column. However, the layered co-landfill inhibited the microbial metabolic activity at the end of the co-landfill process.


Assuntos
Incineração , Eliminação de Resíduos , Cinza de Carvão/química , Resíduos Sólidos/análise , Eliminação de Resíduos/métodos , Instalações de Eliminação de Resíduos
9.
Waste Manag ; 168: 45-53, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37276633

RESUMO

Dioxins in municipal solid waste incineration fly ash (MSWIFA) can cause significant risks to the environment and human health. In this study, the low-temperature thermal treatment of MSWIFA under industrial conditions was simulated in the laboratory to investigate the process parameters for dioxin degradation and ash discharge stages. Correlation analysis and dioxin fingerprint characterization were used to analyze the degradation and ash discharge processes. The degradation efficiency of low-temperature thermal treatment was influenced by multiple factors. At 400℃ for 90 min and 1% O2, the dioxin removal rate was 95.80%, the detoxification rate was 91.73%, and the residual dioxin toxicity in MSWIFA was 22.7 ± 17.8 ng I-TEQ/kg, which was in line with the limit value of 50 ng I-TEQ/kg in the "Technical specification for pollution control of fly-ash from municipal solid waste incineration" (HJ1134-2020). The increase in dioxins during ash discharge did not follow a linear relationship with the process parameters. This was assumed to be related to the MSWIFA composition, as some components containing P, Si, and Al at 150 °C may inhibit dioxin formation. The dioxin increased only by 0.79 ± 2.65 ng/kg, an increase in toxicity of 0.42 ± 0.10 ng I-TEQ/kg, when treated at 150 °C for 30 min and 10% O2.


Assuntos
Dioxinas , Dibenzodioxinas Policloradas , Humanos , Incineração , Resíduos Sólidos , Cinza de Carvão , Temperatura , Dibenzodioxinas Policloradas/análise
10.
Waste Manag ; 167: 13-21, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37236001

RESUMO

Groundwater contamination by landfill leachate is a major concern. Ignoring the long-term increase in leakage caused by the aging of engineered materials may lead to underestimation of the buffer distance (BFD) demand of landfills. In this study, a long-term BFD prediction model was developed by coupling an engineering material aging and defect evolution module with leachate leakage and migration transformation model, and was applicated and validated. The results showed that under landfill performance degradation, the required BFD was 2400 m, i.e., 6 times higher than under undegraded conditions. With the degradation of the performance, the BFD required to attenuate the heavy metal concentrations of groundwater increases more than the BFD required to attenuate organic pollutants. For example, the BFD required for zinc (Zn) was 5 times higher than that required for undegraded conditions, while for 2,4-dichlorophenol (2,4-D), the BFD was 1 times higher. Considering the uncertainties of the model parameters and structure, the BFD should be greater than 3000 m to ensure long-term safe water use under unfavorable conditions such as large leachate production and leakage, weak degradation and fast diffusion of pollutants. If the actual BFD does not meet the demand due to landfill performance degradation, the landfill owner can reduce the reliance on the BFD by reducing the waste leaching behavior. For example, the landfill in our case study would require a BFD of 2400 m, but by reducing the leaching concentration of zinc in the waste from 120 to 55 mg/L, this requirement could be reduced to 900 m.


Assuntos
Água Subterrânea , Eliminação de Resíduos , Poluentes Químicos da Água , Eliminação de Resíduos/métodos , Resíduos Perigosos , Água Subterrânea/química , Poluentes Químicos da Água/análise , Zinco , Instalações de Eliminação de Resíduos , Monitoramento Ambiental/métodos
11.
Sci Total Environ ; 875: 162565, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36889396

RESUMO

Dioxin degradation is considered essential for the environmentally sound management of municipal solid waste incineration fly ash (MSWIFA). Among the many degradation techniques, thermal treatment has shown good prospects owing to its high efficiency and wide range of applications. Thermal treatment is divided into high-temperature thermal, microwave thermal, hydrothermal, and low-temperature thermal treatments. High-temperature sintering and melting not only have dioxin degradation rates higher than 95 % but also remove volatile heavy metals, although energy consumption is high. High-temperature industrial co-processing effectively solves the problem of energy consumption, but with a low fly ash (FA) mixture, and the process is limited by location. Microwave thermal treatment and hydrothermal treatment are still in the experimental stage and cannot be used for large-scale processing. The dioxin degradation rate of low-temperature thermal treatment can also be stabilized at higher than 95 %. Compared to other methods, low-temperature thermal treatment is less costly and energy consumption with no restriction on location. This review comprehensively compares the current status of the above-mentioned thermal treatment methods and their ability to dispose of MSWIFA, especially the potential for large-scale processing. Then, the respective characteristics, challenges, and application prospects of different thermal treatment methods were discussed. Finally, based on the goal of low carbon and emission reduction, three possible approaches for improvement were proposed to address the challenges of large-scale processing of low-temperature thermal treatment, namely, adding a catalyst, changing the FA fraction, or supplementing with blockers, providing a reasonable development direction for the degradation of dioxins in MSWIFA.

12.
Waste Manag ; 162: 8-17, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36917884

RESUMO

Hydrothermal carbonization (HTC) is an effective means of energizing high-water-content biomass that can be used to convert sewage sludge (SS) into hydrochar and reduce nitrogen content. To further reduce the emission of NOx during the combustion of hydrochar and seek proper disposal method of liquid product, the mechanism of nitrogen conversion was studied in the range of 180-320 °C and 30-90 min. At 180-220 °C, 42.15-52.91% of the nitrogen in SS was transferred to liquid by hydrolysis of proteins and inorganic salts. At 240-280 °C, the nitrogen in hydrochar was mainly in the form of heterocyclic -N (quaternary-N, pyrrole-N, and pyridine-N). The concentration of NH4+-N increased from 6.82 mg/L (180 °C) to 26.58 mg/L (280 °C) due to the enhancement of the deamination reaction. At 300-320 °C, pyrrole-N (from 15.92% to 9.38%) and pyridine-N (from 5.52% to 3.73%) in the hydrochar were converted to the more stable quaternary-N (from 0.31% to 4.28%). Meanwhile, the NH4+-N and amino-N in the liquid decomposed into NH3. Prolonging the carbonization time promoted the hydrolysis of proteins, the conversion of heterocyclic -N, and the production of NH3. Under optimal reaction conditions (280 °C and 60 min), the nitrogen in the SS is converted to stable forms and the energy balance meets the requirements of circular-economy. The results show that temperature determines the nitrogen form and the carbonization time affects the nitrogen distribution. So HTC has the potential to reduce NOx emissions from SS energy utilization processes.


Assuntos
Nitrogênio , Esgotos , Temperatura , Hidrólise , Biomassa , Carbono
13.
Waste Manag ; 157: 312-320, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36587536

RESUMO

Due to the complexity of industrial solid waste, heavy metals and organics can be enriched in leachate. While leachate is difficult to handle, it can also cause clog of the leachate collection system (LCS), increasing the risk of leakage. Therefore, it is necessary to study the clogging process of LCS in industrial solid waste landfills (ISWLs). In this study, the prediction of the clogging process and hydraulic conductivity evolution of the LCS in ISWL were carried out through laboratory experiments and model simulations. The results show that the LCS of ISWLs in China faces severe clogging challenges. First, the rate of clogging is inversely proportional to the rate of leachate production. Then, it was found that the main influencing factor was infiltration conditions (precipitation and capping systems). Under accelerated infiltration conditions, the time for complete clogging of the leachate drainage pipes was shortened from the initial 26-735 years to 11-315 years. The time to complete LCS clogging was shortened from the initial 78-2205 years to 32-945 years. In addition, the acceleration of the clogging process was fully consistent with the increase in leachate production. In particular, when the net infiltration volume increases from 0 to 50 mm, the clogging process is significantly accelerated. After greater than 50 mm, the effect on the clogging process gradually decreases. This provides a reliable theoretical basis for accurately predicting the clogging process of LCS.


Assuntos
Eliminação de Resíduos , Poluentes Químicos da Água , Resíduos Sólidos/análise , Eliminação de Resíduos/métodos , Poluentes Químicos da Água/análise , Instalações de Eliminação de Resíduos , China
14.
J Environ Manage ; 325(Pt A): 116497, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36270129

RESUMO

Investigating the release of organic pollutants from bricks made from solid waste is essential. Based on Fick's laws of diffusion, the diffusion model and diffusion-degradation model of polycyclic aromatic hydrocarbon (PAH) emission from the bricks were deduced. The degradation and 64-day emission of PAHs in solid bricks made of oil-based drill cuttings were observed experimentally. The emission and degradation characteristics of 14 PAHs were obtained and fitted with the diffusion and diffusion-degradation models. The emission of most of the PAHs from the bricks at the beginning was in good agreement with the diffusion model, except for benzo[a]anthracene, pyrene, benzo[b]fluoranthene, benzo[k]fluoranthene, and benzo[a]pyrene. However, the emission of PAHs after some time was significantly lower than the theoretical value of the diffusion model. Moreover, fitting with the diffusion-degradation model gave better results, indicating that a joint diffusion-degradation mechanism controlled the emission of PAHs. Therefore, the diffusion-degradation model can better predict the long-term emission of PAHs in bricks made of oil-based drill cuttings.


Assuntos
Poluentes Ambientais , Hidrocarbonetos Policíclicos Aromáticos , Fluorenos , Benzo(a)pireno/análise
15.
Environ Sci Pollut Res Int ; 30(4): 10202-10212, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36071356

RESUMO

Field studies were conducted to study the emission and distribution characteristics of dioxins by elevating the chlorine concentration in feedstock in a circular fluidized bed boiler. The concentration and total equivalent quantity of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) in all flue gas, electrostatic ash, bag filter ash, and bottom ash samples under blank condition (i.e., feedstock was normal coal) and chlorine labeling condition (i.e., feedstock mixed with coal and chlorine-containing labeling agent) were analyzed. Results illustrated that the concentration of PCDD/Fs in all gaseous and ash samples increased with the addition of chlorine in feedstock, with the largest and least increment in dioxin concentration observed in electrostatic ash and flue gas. PCDDs were the predominate congeners in flue gas, accounted for 50.1-60.4% of the total PCDD/F concentration under chlorine labeling and blank conditions, while PCDD/F distribution changed from PCDD- to PCDF-predominate by increasing chlorine content in feedstock under all field test conditions: 46.6-92.9%, 34.0-76.1%, and 47.0-53.1% of PCDFs were distributed in electrostatic ash, bag filter ash, and bottom ash, respectively. Highly chlorinated PCDD/F congeners such as O8CDD/F and 1,2,3,4,6,7,8-H7CDD/F were the primary contributors to dioxin concentration in flue gas and bottom ash samples, whereas low-chlorinated 2,3,7,8-T4CDF and 1,2,3,7,8-P5CDF congeners became critically dominating in electrostatic and bag filter ash.


Assuntos
Dioxinas , Dibenzodioxinas Policloradas , Cinza de Carvão/análise , Dibenzodioxinas Policloradas/análise , Cloro , Dibenzofuranos , Incineração , Dibenzofuranos Policlorados , Gases , Cloretos , Carvão Mineral
16.
J Environ Manage ; 328: 116962, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36470002

RESUMO

The present study experimentally quantified the pyrolysis behaviors of waste solvent-based automotive paint sludge (OAPS) and water-based automotive paint sludge (WAPS) at four different heating rates using thermogravimetric-Fourier transform infrared (TG-FTIR) spectrometry and pyrolysis-gas chromatography-mass (Py-GC/MS) spectrometry analyses. Flynn-Wall-Ozawa (FWO) and Kissinger-Akahira-Sunose (KAS) methods combined with the master-plots method were employed to investigate the pyrolysis kinetics and reaction mechanisms of waste automotive paint sludge. Three reaction stages and three reaction peaks in stage 2 were distinguished for both OAPS and WAPS degradation. The average activation energy (Ea) estimates for OAPS (FWO: 179.09 kJ/mol; KAS: 168.28 kJ/mol) were slightly higher than WAPS (FWO: 175.90 kJ/mol; KAS: 164.80 kJ/mol) according to FWO and KAS methods. The main pyrolysis reaction mechanisms of both OAPS and WAPS closely matched with the order-based model corresponding to 3rd and 2nd order random nucleation on an individual particle. The evolved gas species of CH4, CO2, phenols, NH3, H2O, and CO from OAPS and WAPS pyrolysis were identified by TG-FTIR. According to Py-GC/MS, hydrocarbons (47.2%) and O-components (42.7%) were relatively large after OAPS and WAPS pyrolysis, respectively. Melamine was the most abundant N-component product after pyrolysis of OAPS (5.8%) and WAPS (4.8%).


Assuntos
Pirólise , Esgotos , Cromatografia Gasosa-Espectrometria de Massas , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria , Gases , Pintura
17.
Innovation (Camb) ; 3(5): 100281, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-35880235

RESUMO

Metal-organic frameworks (MOFs) have garnered multidisciplinary attention due to their structural tailorability, controlled pore size, and physicochemical functions, and their inherent properties can be exploited by applying them as precursors and/or templates for fabricating derived hollow porous nanomaterials. The fascinating, functional properties and applications of MOF-derived hollow porous materials primarily lie in their chemical composition, hollow character, and unique porous structure. Herein, a comprehensive overview of the synthetic strategies and emerging applications of hollow porous materials derived from MOF-based templates and/or precursors is given. Based on the role of MOFs in the preparation of hollow porous materials, the synthetic strategies are described in detail, including (1) MOFs as removable templates, (2) MOF nanocrystals as both self-sacrificing templates and precursors, (3) MOF@secondary-component core-shell composites as precursors, and (4) hollow MOF nanocrystals and their composites as precursors. Subsequently, the applications of these hollow porous materials for chemical catalysis, electrocatalysis, energy storage and conversion, and environmental management are presented. Finally, a perspective on the research challenges and future opportunities and prospects for MOF-derived hollow materials is provided.

18.
J Environ Manage ; 317: 115369, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35623130

RESUMO

Volatile organic compounds (VOCs) diffused from paint sludge are potential hazard contributing significantly to environmental pollution and exposure to them can cause severe health issues. In this paper, a diffusion-controlled model was firstly developed for characterizing the emission behaviors of cumulative VOCs from automotive solvent-based paint sludge based on the worst field management scenario. The presented model is characterized by two key parameters: the diffusion coefficient (Dm) and the initial emittable concentration (Cm,0), which can be simultaneously obtained by our proposed ER-history method. Four major components were detected including 1-butanol, butyl acetate and 1,2,4-trimethylbenzene and 1-ethyl-4-methylbenzene. In addition, the model was validated by using environmental data in a ventilated test chamber, proving that the model is reliable and convincing. However, relative deviations of 1-butanol and butyl acetate are larger than those of 1,2,4-trimethylbenzene and 1-ethyl-4-methylbenzene, indicating that the model is more accurate for predicting hydrophobic VOCs release than those of hydrophilic VOCs. Besides, an increase in Cm,0 and Dm tends to enhance VOCs cumulation release. Our studies provide new insight into experimental designs for rapid model parameters measurement and a sound basis for estimating VOCs cumulative release from paint sludge as well as for hazardous waste.


Assuntos
Poluentes Atmosféricos , Compostos Orgânicos Voláteis , 1-Butanol , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Pintura , Esgotos , Solventes , Compostos Orgânicos Voláteis/análise
19.
Ecotoxicol Environ Saf ; 235: 113449, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35358919

RESUMO

Polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/Fs) are highly toxic and persistent compounds that provoke a wave of publicity. Bromophenols are important precursors for forming PBDD/Fs, and their reaction path has always been a research hotspot. In this study, the formation characteristic of PBDD/Fs from 2,4,6-TBP were studied. The yields of 2,3,7,8-substituted PBDD/Fs and 2,4,6,8-TBDF for the different thermal products ranged from 0.067 to 10.3 ng/g and 0.207-9.68 ng/g, respectively. The effects of adding Cu, Fe, and Sb2O3 were investigated and found to be more inclined to accelerate the formation of ortho-substituted PBDD/Fs than 2,3,7,8-PBDD/Fs. The formation pathways of 2,3,7,8-substituted PBDD/Fs and 2,4,6,8-TBDF were also proposed. 2,4,6,8-TBDF is generated in the C-C coupling reactions of some radical intermediates from the debromination of 2,4,6-TBP. The 2,3,7,8-PBDD/Fs are produced through more complex debromination, bromine substitution, and bromine rearrangement reactions. In addition, various catalytic effects on PBDD/F formation pathways were found, and the catalytic effect of Cu by the Ullmann reaction was the highest, while bromophenol oxidation by Fe was the highest. These results proved that both 2,3,7,8-substituted and non-2,3,7,8-substituted PBDD/Fs would be generated from 2,4,6-TBP, and the effects of the catalyst on the Br substituted position of 2,3,7,8-substituted PBDD/Fs were much lower than the Br-substituted position on bromophenol.


Assuntos
Dibenzofuranos , Fenóis , Bromo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...